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Figure 1. Benchmark Overview. (a) We present a benchmark for Large Vision-Language Models (LVLMs) consisting of 20 diverse
visual grid reasoning puzzles (see supplementary material for complete table of per-puzzle examples and descriptions). (b) We evaluate
state-of-the-art LVLMs, including closed-source models such as GPT-4o [38] and Gemini [53], open-source models like Llama 3.2 [16],
and recently released reasoning models such as Gemini-Thinking, on various aspects, including perception, overall puzzle-solving, and
cell-level rule-following. Additionally, to explore potential approaches for improving LVLMs’ puzzle-solving abilities, we examine post-
training techniques, including (c) Solution Supervised Fine-Tuning (S-SFT) and (d) Reasoning Supervised Fine-Tuning (R-SFT), where
we train on thought trajectories of a predefined solver. (Best viewed on a screen when zoomed-in)
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Abstract

Large Vision-Language Models (LVLMs) struggle with puz-
zles, which require precise perception, rule comprehension,
and logical reasoning. Assessing and enhancing their per-
formance in this domain is crucial, as it reflects their abil-
ity to engage in structured reasoning — an essential skill
for real-world problem-solving. However, existing bench-
marks primarily evaluate pre-trained models without ad-
ditional training or fine-tuning, often lack a dedicated fo-
cus on reasoning, and fail to establish a systematic evalua-
tion framework. To address these limitations, we introduce
VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark
featuring 20 diverse puzzles1. VGRP-Bench spans multiple
difficulty levels, and includes extensive experiments not only
on existing chat LVLMs (e.g., GPT-4o), but also on reason-
ing LVLMs (e.g., Gemini-Thinking). Our results reveal that
even the state-of-the-art LVLMs struggle with these puz-
zles, highlighting fundamental limitations in their puzzle-
solving capabilities. Most importantly, through systematic
experiments, we identify and analyze key factors influencing
LVLMs’ puzzle-solving performance, including the number
of clues, grid size, and rule complexity. Furthermore, we
explore two Supervised Fine-Tuning (SFT) strategies that
can be used in post-training: SFT on solutions (S-SFT) and
SFT on synthetic reasoning processes (R-SFT). While both
methods significantly improve performance on trained puz-
zles, they exhibit limited generalization to unseen ones. We
will release VGRP-Bench to facilitate further research on
LVLMs for complex, real-world problem-solving.

1. Introduction
As Large Language Models (LLMs) advance rapidly [12,
21, 46, 50, 55], researchers are extending their capabilities
to multimodal tasks, leading to the rise of Large Vision-
Language Models (LVLMs) [5, 16, 36, 63, 69]. While
LVLMs demonstrate success in some perception tasks, they
often face challenges in strategic planning, especially in vi-
sual games that require a combination of perception and
multi-step reasoning [39, 59, 66].

Among the visual games, grid-like reasoning puzzles,
e.g., Sudoku, Futoshiki, and Thermometers, Fig. 1, are
renowned for their simple rules yet challenging solutions.
They have gained widespread popularity, even being fea-
tured in annual world championships [60]. Beyond enter-
tainment, grid puzzles also serve as structured reasoning
tasks that require logical deduction, constraint satisfaction,
and combinatorial search—skills that are fundamental to

⇤Work done at Meta as an intern.
1Unlike some benchmarks that scrape fixed pre-existing puzzles from

various sources, our benchmark supports sampling puzzles with different
settings and difficulty levels through hyperparameters.

Levels Fine-Tuning #Puzzles/Games #Models
VGRP-Bench X X 20 16
ING-VP [66] ⇥ ⇥ 6 15

BALROG [39] ⇥ ⇥ 6 11
[59] ⇥ ⇥ 6 8

Table 1. VGRP-Bench offers a large puzzle collection for LVLM
benchmarking, providing a comprehensive evaluation of state-of-
the-art LVLMs across different dimensions, such as perception,
rule adherence, and overall puzzle-solving, across different diffi-
culty levels. We also investigate post-training strategies to enhance
LVLMs’ puzzle-solving performance.

real-world problem-solving in domains such as robotic path
planning [68], automated logistics scheduling [52], and em-
bodied AI control [64]. Their well-defined rules and in-
herent complexity make them ideal for testing AI system’s
ability to process structured visual information and adhere
to logical constraints. Nevertheless, despite their potential
as benchmarks for visual reasoning, there are underused for
evaluating LVLMs in existing research.

To address this gap, we introduce the Visual Grid
Reasoning Puzzle Benchmark (VGRP-Bench), the largest
visual puzzle benchmark to date in terms of puzzle vari-
ety and complexity, featuring 20 diverse customizable puz-
zles that emphasize grid-based visual reasoning and form
a taxonomy of rules, attributes, and patterns (Fig. 3). We
draw inspiration from popular reasoning puzzles [42–44],
and design this benchmark with different levels of difficulty,
easy , medium , and hard , depending on the grid
size, the required number of reasoning steps, and the size
of the decision space. We conduct extensive experiments
evaluating state-of-the-art LVLMs, including their reason-
ing counterparts, Fig. 5. With our benchmark, we assess
several aspects of LVLMs including perception, rule adher-
ence, and overall puzzle-solving capabilities. To separate
reasoning and perception, we additionally provide a text
version of all puzzles. Through evaluations, we observe that
our benchmark poses a huge challenge for most LVLMs,
even at the easy level. For instance, GPT-4o fails to solve
a simple 4 ⇥ 4 Sudoku consistently, even in the text-only
version of the game (< 30% solving rate). We summarize
several common failure cases, such as the inability to local-
ize a number on a grid and to correctly keep track of a rea-
soning process. Moreover, we investigate factors that might
impact an LVLM’s performance, such as the difficulty level,
the grid size, the number of clues, and the rules involved in
a puzzle.

Beyond benchmarking off-the-shelf models following
other game benchmark papers, we investigate whether post-
training techniques can enhance LVLMs’ puzzle-solving
abilities (Tab. 1). Specifically, we explore two post-training
strategies, including Solution Supervised Fine-Tuning (S-
SFT) and Reasoning SFT (R-SFT). In S-SFT, we fine-
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tune LVLMs on final solutions, typically represented as
nested lists indicating the board’s final state. In R-SFT, in-
spired by human and algorithmic approaches to puzzle solv-
ing [10, 13] such as step-by-step reasoning and process-of-
elimination via rule-based deduction, we construct an SFT
dataset by recording a solver’s stepwise reasoning trajec-
tory. We then fine-tune the LVLM on this dataset. We ob-
serve significant improvement in puzzle solving at the easy
level, while fine-tuned models still struggle at the medium
and hard levels. Additionally, recognizing the risk of over-
fitting to the puzzles used for finetuning, we examine the
generalization capabilities of models trained with each ap-
proach in our benchmark.

In summary, we present a novel, customizable LVLM
benchmark tailored for visual reasoning puzzles and con-
duct a systematic evaluation of LVLMs, as shown in Tab. 1.
Our key contributions are as follows:
• We introduce a large LVLM customizable grid-based rea-

soning benchmark with systematic evaluation protocols
structured around a taxonomy of diverse visual clues and
rules.

• We conduct extensive experiments on state-of-the-art
closed-source and open-source LVLMs using our bench-
mark, including fine-grained evaluations such as cell-
level perception and step-wise rule understanding.

• We summarize common failure cases of LVLMs in puzzle
solving and provide detailed ablation studies on various
factors that impact an LVLM’s puzzle solving, such as
difficulty level, number of clues, and rules involved.

• To gain deeper insights into the challenges faced by
LVLMs in puzzle solving, we explore two post-training
strategies: Solution SFT and Reasoning SFT.

2. Related Works
2.1. General LLM/LVLM Benchmarks
The advanced capabilities of Large Language Models
(LLMs) [1, 2, 53, 54] and Large Vision-Language Mod-
els (LVLMs) [30–32, 35] have inspired extensive research
on benchmarking their capabilities. Prominent benchmarks
like SuperGLUE [55], MMLU [21], and BigBench [50],
evaluate general language understanding and multitasking
text-based capabilities. Domain-specific benchmarks eval-
uate specialized competencies such as coding [3, 37] and
mathematics [12, 22]. Notable early examples include
Science QA [34], VizWiz [8], and VQAv2 [19]. Spe-
cific domains, such as image captioning, are represented
by works such as [29]. More recent efforts [67], such as
MMBench [33], EMMA [20], and SEED-Bench [27], of-
fer comprehensive evaluations of multimodal reasoning and
perception. BLINK [18] focuses on visual perception tasks
that humans can solve in an instant. LMEvalKit [15] unifies
model comparisons across various benchmarks.

Figure 2. Result Summary on Easy Level. Puzzle-solving rate
of state-of-the-art chat LVLMs on easy-level puzzles associated
with each rule. Please refer to the experiment section for detailed
result analysis. Note that this plot’s score ranges from 0 to 45%,
instead of 100%. (Best viewed on a screen when zoomed in)

Our VGRP-Bench differs from other benchmarks by fo-
cusing on reasoning puzzles, a special challenge to LVLMs
that requires combining perception and decision making
with multi-step reasoning.

2.2. LLM/LVLM Game Benchmarks

Challenging games have long been regarded as mile-
stones of machine intelligence as exemplified by Deep
Blue [24] and AlphaGo [49]. Classical benchmarks, such as
Atari [48] and the Arcade Learning Environment [7], have
played a crucial role in developing reinforcement learning
algorithms and improving agent capabilities. Given the nat-
ural language capabilities of LLMs, researchers have intro-
duced benchmarks where LLM agents interact within game
environments [40, 61]. [9, 23, 45, 51, 57] investigate LLMs’
performance in agent-based and collaborative game envi-
ronments, emphasizing interaction and teamwork skills.

Several recent studies benchmark LVLMs on visual
games. ING-VP [66] shows that LVLMs still struggle
with easy games. [59] proposes a benchmark with fine-
grained evaluation. BALROG [39] measures LVLM games
like MiniHack and NetHack. [17] proposed a puzzle
RL environment, and benchmark several RL algorithms.
ZeroBench [47] proposes a benchmark in which current
LVLMs struggle to achieve meaningful accuracy. A con-
current work, [56], created a visual benchmark by scraping
existing puzzles from online sources, resulting in a dataset
of 949 instances of puzzles.

VGRP-Bench distinguishes itself by focusing on reason-
ing puzzles, employing customizable puzzle generators, and
systematically evaluating models from inference to post-
training techniques.
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Figure 3. Benchmark Games: Primitives and Sample Questions. we systematically define puzzle primitives, including conditions,
constraints, variables, and states, to establish a unified framework for inference and evaluation (left). This benchmark includes tasks
designed to evaluate the reasoning, rule-following, and perception capabilities of state-of-the-art LVLMs. (Best viewed on a screen when
zoomed in)

3. VGRP-Bench: The Benchmark
This section is organized as follows: we first present our
benchmark in Sec. 3.1, along with its evaluation protocol in
Sec. 3.2 and taxonomy in Sec. 3.3. In addition to bench-
marking off-the-shelf models, we investigate the challenges
faced by existing LVLMs in solving visual puzzles and pro-
pose strategies to address these limitations. Specifically, we
use two fine-tuning strategies, Solution Supervised Fine-
Tuning (S-SFT) and Reasoning SFT (R-SFT), as described
in detail in Sec. 3.4.

3.1. Grid-Like Visual Reasoning Puzzles
Puzzle Selection. To form this benchmark, we select vi-
sual puzzle games based on the following criteria: requiring
multi-step reasoning for decision-making and rule valida-
tion, incorporating a diverse range of visual clues, rules and
interaction methods, and ultimately contributing to a struc-
tured taxonomy (Fig. 4). For example, vanilla Sudoku is
purely numerical and relies on repetition-based constraints,
while Trees-and-Tents demands pattern recognition, rela-
tional reasoning between trees and tents, and checking 1-
to-1 matching. In contrast, Thermometers relies heavily on
understanding and applying physical-world rules, e.g., ther-
mometers must be filled starting from their base2.

2Here, Sudoku serves as an example of puzzles that could be easily
converted to text, owing to its widespread popularity, while Trees-and-

Puzzle Primitives. To ensure consistency across different
puzzles and facilitate future integration of new ones, we de-
sign the benchmark around four core primitives—variables,
states, constraints, and conditions—to provide a unified
structure, as depicted in Fig.4 left. Variables V and States
S . Each puzzle consists of a set of variables, V = {vi}ni=1,
representing cells or elements requiring value assignments.
For example, a 4 ⇥ 4 Sudoku grid comprises 16 variables,
with each variable taking a value from the set of possible
values {1, 2, 3, 4}. The set of states S = {si}ni=1 represents
the current value assignments of the variables. Constraints.
Constraints C = {cj}mj=1 define rules for valid puzzle state
configurations. For instance, in Sudoku, constraints enforce
the non-repetition of values in each row, column, and block.
In Trees and Tents, constraints enforce a bijective mapping
between trees and tents while adhering to row and column
sums. Conditions. Conditions correspond to preset values
or clues that define the puzzle’s starting state. Examples in-
clude predefined digits that act as initial clues in Sudoku or
row and column constraints given as clues in Thermometers.

3.2. Evaluation Protocol
Our benchmark evaluates LVLM performance across sev-
eral capabilities, including perception, rule-following, and
reasoning tasks at multiple granular levels, and on difficulty

Tents and Thermometers represent puzzles harder to convert to text.
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(a) Game Primitives

Conditions: Row / column sum; Trees
Constraints: Row / column sum; Tree-tent 1-to-1; Non-neighboring
Variables: 25 cells; {“*”, “tent”, “empty”}
States: The current variables

Conditions: Row / column sum; Thermometers
Constraints: Row / column sum; Filling order (bottom-to-top)
Variables: 25 cells; {“*”, “filled”, “empty”}
States: The current variables

Conditions: Row / column sum; Number of visible skyscrapers
Constraints: Row / column sum; Visibility
Variables: 16 cells; {“*”} + Height
States: The current variables
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(b) Sample Benchmark Questions

You are a Trees and Tents player. In this game, each tree must be paired with exactly
one tent that is horizontally or vertically adjacent to it (a 1-to-1 relationship), and tents
cannot touch each other, even diagonally. Given the current game state, what is at
position ({row}, {col})?”

A. Tree. B. Tent. C. Empty
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You are a Thermometers puzzle player. In this game, you need to fill thermometers
from their bulb (start) to their top, without gaps. Given the current game state, is it valid
to mark the cell at ({0}, {1}) as {filled}?”

A. Yes. B. No

Conditions: Initial cells
Constraints: Row / column / block non-repetition
Variables: 16 cells; {“*”} + {1, 2, 3, 4}
States: The current variablesSu

do
ku

R
ea
so
ni
ng

You are a Sudoku player. You have to enter a numerical digit from 1 through 4 in each
cell of a 4x4 grid made up of 2x2 block. Indexing starts at 0. The rule is to make sure
unique numbers in each row, column, and block. Given the current game state in the
screenshot, what is the current state of the grid.

You are a Skyscraper puzzle player. You have to enter a numerical digit from 1
through N in each cell of an 4x4 grid. The rules are: unique numbers in each row and
column. The numbers on the sides of the grid indicate how many skyscrapers would
you see if you look in the direction of the arrow. Given the current game screenshot.
Give me your thinking process and your solution .

Figure 4. Diverse Rules and Visual Patterns in VGRP-Bench. Our benchmark includes a diverse set of rules, such as counting and
mathematical calculations, and also exhibits diversity in visual patterns, encompassing text, numerical values, and objects such as trees.
We highlight puzzles that are easy or difficult to convert into text.

levels, as illustrated in the right column of Fig. 4. Specifi-
cally, at the puzzle-solving level, we assess overall percep-
tion accuracy and puzzle-solving success rate by evaluating
the LVLM’s holistic understanding of the board and its abil-
ity to generate a correct solution. Moreover, we provide ad-
ditional evaluations at finer levels of granularity, including
evaluations at the cell and step level.

3.3. Puzzle Rule/Capability Taxonomy
We create a taxonomy of rule/capabilities required to solve
the puzzles in our benchmark, and visualize the prominent
ones in Fig. 4, as one puzzle might require multiple capa-
bilities like counting, a basic rule in most puzzles. For ex-
ample, Killer-Sudoku, Kakuro, Kakurasu, and Renzoku re-
quire mathematical calculations involving addition and sub-
traction. Trees-and-Tents, requiring the LVLM to under-
stand bijective matching of trees and tents, is an example
the matching rule of associating spatially or semantically
relevant components. Other rules and capabilities are nu-
merical comparison, understanding procedural order (uni-
directionality) and putting connected components together.

3.4. Post-Training Techniques
Beyond assessing off-the-shelf LVLMs, we would like to
take a step further to explore potential approaches to boost
their performance. In this subsection, we utilize two post-
training methods to tune a pretrained LVLM, i.e., Solu-
tion Supervised Fine-Tuning (S-SFT) and Reasoning Super-
vised Fine-Tuning (R-SFT).
S-SFT. A baseline is to use Supervised Fine-Tuning. Here,

we adopt two strategies. First, we adopt a naive SFT for su-
pervision of the LVLM to generate solutions. More specif-
ically, we first convert the solution into a JSON-formatted
text file, “ {“answer”: [[1, 2, 3, 4], [3, 4, 1, 2] , [2, 1, 4, 3],
[4, 3, 2, 1]]}”. During training, we provide a text puzzle de-
scription as prompt and a screenshot of the puzzle as input.
Then we use the predefined solution as supervision for the
model.

R-SFT. We introduce a SFT data creation method specific
for puzzle solving. Inspired by human and algorithmic puz-
zle solving that feature step-by-step reasoning and per-cell
rule violation checking, we propose to conduct supervised
Fine-Tuning (SFT) on synthetic trajectories. In this way,
we would like to supervise LVLMs to imitate step-by-step
reasoning, in a similar manner to how a predefined solver
solves these puzzles. To generate thought trajectories, we
define the reasoning process as a trajectory through states.
A Trajectory, T = {si}Ti=1, encodes key intermediate
states encountered during puzzle solving. Each state st
captures variable assignments and potential values for unas-
signed variables. To avoid the inefficiency of starting from
a random cell, Depth-First Search (DFS) with process-of-
elimination is employed, enabling systematic exploration
and backtracking upon failure states. For instance, in a 4×4
Sudoku with 12 missing values, a random start often leads
to excessive branching, producing trajectories that exceed
the model’s output window.
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Figure 5. Off-the-Shelf LVLMs on Level-Easy with CoT. We report both correct perception rate and puzzle-solving rate evaluations
with closed-source / open-source and reasoning / chat models. Please refer to supplementary for additional evaluations such as finer
granularity evaluations and other difficulty levels, e.g., medium and hard . (Puzzle-solving in hatched bars and best viewed on a
screen when zoomed in)

4. Experiments

4.1. Implementation Details

We benchmark several state-of-the-art LVLMs. For acces-
sibility purposes, we include both closed-source and open-
source models like Gemini-Pro [53] and LlaVA-OneVision-

7B [28] respectively. To assess different types of models,
we include both chat LVLMs and reasoning LVLMs3. For

3In the reasoning model category, we include Gemini-2.0-Thinking and
Qwen-QVQ, as other reasoning models are either lacking vision capabili-
ties, e.g., DeepSeek [14], or only accessible to high-tier users. Due to the
rate limit in Gemini-2.0-Thinking, we only evaluate puzzle-solving with

6
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evaluation, we launch 5 independent inference runs, with
each run containing 20 instances, resulting in a total of 100
samples. We report the overall mean correctness and stan-
dard deviation across all sample runs. For post-training, we
use Llama 3.2 Vision Instruct as the base model and con-
duct training on a single node equipped with 8 A100 GPUs.
We ensure that the training and test splits contain no over-
lapping puzzles in terms of input or solution. Please refer to
supplementary for more implementation details.

4.2. Off-the-Shelf LVLMs Evaluation
We present the overall perception and puzzle-solving re-
sults in Fig. 5, where all LVLMs struggle with puzzle-
solving, achieving a success rate below 80%. Additional
granularity and evaluation results are discussed below, and
the complete evaluation on all puzzles can be found in the
supplementary material. More specifically, regarding per-
ception, most closed-source models, except for Claude,
achieve less than 50% accuracy. Among open-source
models, Qwen2.5-72B performs the best. Hitori exhibits
the highest perception accuracy among all puzzles, sug-
gesting that LVLMs struggle with grids containing miss-
ing cells. Secondly, in terms of puzzle-solving, though
all models struggle, closed-source models generally out-
perform open-source ones. We also observe that larger
models tend to perform better; for example, GPT-4o out-
performs GPT-4o-mini. For reasoning models, we find that
Gemini-2.0-Thinking performs well, whereas Qwen-QVQ
underperforms compared to Qwen2.5-72B, potentially be-
cause Qwen-QVQ is a preview version.
Cell-Level Evaluation. We provide cell-level percep-
tion evaluation in Fig. 6. Similar to overall percep-
tion, closed-source models—particularly Claude and Gem-
ini 2.0-Flash—generally achieve the highest performance.
Interestingly, we notice cases when querying the LVLM for
the entire board yields the correct answer, whereas query-
ing a specific cell results in an incorrect response. This phe-
nomenon mirrors previously observed failures in LVLMs,
such as their struggles with counting tasks like ”How many
R’s are in the word Strawberry” [62].
Step-Level Rule-Following Evaluation. Claude consis-
tently achieves the highest performance, whereas LlaVA
performs the worst among all models. Among the four puz-
zles shown in Fig. 7, Sudoku attains the highest accuracy,
aligning with the intuition that it is a widely recognized puz-
zle with relatively simple and well-defined rules compared
to the others.
Text Puzzles Evaluation. To understand the reasoning
challenges in the text domain, we present the results of off-
the-shelf models using text input in Fig. 8. Notably, while
this setting eliminates vision-related losses, the puzzles re-
main challenging for LVLMs.

chain-of-thought prompting.

Figure 6. Cell-level Perception Accuracy at Level-Easy .
(Best viewed on a screen when zoomed in)

Figure 7. Step-Level Rule-Following Accuracy at Level-
Easy . (Best viewed on a screen when zoomed in)

Figure 8. Performance of Text Version Puzzles on Level-
Easy . For the text version of puzzles, the puzzle-solving rate
increases significantly compared to the vision-based setting, high-
lighting the challenge of visual perception in our benchmark. (Best
viewed on a screen when zoomed in)

Puzzle Taxonomy Analysis. The diversity of puzzles and
rule types in our benchmark enables analysis through the
lens of puzzle taxonomy, making it a key differentiator from
other existing benchmarks. Each category includes at least
two puzzles. For example, both Field-Explore and Trees-
and-Tents require matching and pairing components. We
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present results aggregated by puzzle taxonomy in Fig. 2.
Effect of Difficulty Level. As difficulty increases, reflected
in larger grids and more steps required to complete the
puzzle—accuracy declines in both perception and puzzle-
solving (Fig. 10). Notably, at the medium difficulty level
with Thermometers, all LVLMs achieve a perception ac-
curacy below 5% and fail to solve the puzzles completely.
Performance further deteriorates at the hard difficulty level,
indicating significant limitations in handling complex puz-
zles.
Effect of Clue Number. Intuitively, providing more clues
simplifies the puzzles, leading to improved performance.
This trend is evident in Fig. 9, where we also observe a
corresponding increase in perception accuracy.

Figure 9. Results with Different Number of Clues on Level-
Easy . When more clues are provided (to the right), puzzles
become easier, resulting in a higher puzzle-solving rate. (Best
viewed on a screen when zoomed in)

Common Failure Patterns. Off-the-shelf chat models ex-
hibit several common failure cases. For instance, chat
LVLMs often struggle to localize values on a grid, misinter-
preting sequences like [*, 2, *, ] as [, *, 2, *]. Additionally,
they frequently misunderstand the roles of different compo-
nents, such as mistaking a cage clue for a board number in
Killer Sudoku, and they tend to repeat responses. Extensive
sample outputs and common failure cases are provided in
the supplementary material.

4.3. Post-Training Evaluation
We compare the pre-trained Llama 3.2 model with its fine-
tuned versions after S-SFT and R-SFT in Fig. 11, with addi-
tional details provided in the supplementary material. First,
we observe that both S-SFT and R-SFT significantly en-
hance performance, as the pre-trained model initially fails
to produce any correct answers. This suggests that general-
ization to new puzzle settings is feasible. Comparing S-SFT
and R-SFT, their effectiveness varies across puzzles: S-SFT
outperforms R-SFT in some cases, whereas R-SFT excels
in others such as Aquarium. We hypothesize that this is
because R-SFT receives more supervision but is also more
susceptible to compounding errors in long reasoning trajec-

Figure 10. Off-the-Shelf LVLMs on Level-Medium (top row)
and Hard (bottom row) with CoT. (Best viewed on a screen
when zoomed in)

tories. We provide an evaluation on cross-puzzle general-
ization in the supplementary material.

Figure 11. Comparing S-SFT and R-SFT on Level-Easy .
Both S-SFT and R-SFT significantly improve the pretrained
model’s performance in perception and puzzle-solving, with R-
SFT achieves slightly better results in a few puzzles such as Bi-
nairo, while being lower in puzzles like Field-Explore. (Puzzle-
solving in hatched and best viewed on a screen when zoomed in)

5. Limitations and Future Work
Due to the high computational cost of fine-tuning large
models (e.g., 70B parameter models), our SFT experiments
are limited to smaller 11B models. Future research could
explore inference-time strategies, including Monte Carlo
Tree Search [49]. Another promising direction is to en-
hance puzzle-solving performance by integrating RL with
outcome-based reward models. We report preliminary find-
ings in the supplementary material.
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6. Conclusion
In this work, we have introduced VGRP-Bench, a large vi-
sual grid puzzle benchmark with various setting, includ-
ing difficulty levels and diversified puzzle rules, and sys-
tematic evaluation. We evaluated off-the-shelf LVLMs on
our VGRP-Bench showing their inability of puzzle solv-
ing. Furthermore, we explore post-training for improving
LVLM performance, revealing significant improvement on
the trained puzzle but also a lack of generalization to unseen
ones. We hope this benchmark inspires future research and
advances LVLM studies for complex, real-world tasks.
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